PHYSCS

(SNGLE CORRECT ANSMER TYPE)

Thissedion contains 20 multiple choice questions Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.
Marking scheme: $\mathbf{+ 4}$ for comectanswer, $\mathbf{0}$ if not attempted and $\mathbf{- 1}$ in all other cases.

1. The internal energy (U), pressure (P) and volume (V) of an ideal gas are related as $\mathrm{U}=3 \mathrm{PV}+4$.
1) either monoatomic or diatomic
2) diatomic only
3)monoatomic only
3) polyatomic only

Key: 4

Solution:

$\mathrm{U}=3 \mathrm{nRT}+4$
$\frac{1}{n} \frac{d U}{d T}=3 R$
$C_{v}=3 R$
Polyatomic
02. The incident ray, reflected ray and the outward drawn normal are denoted by the unit vectors \vec{a}, \vec{b} and \vec{c} respectively. Then choose the correct relation for these vectors.

1) $\vec{b}=\vec{a}-2(\vec{a} . \vec{c}) \vec{c}$
2) $\vec{b}=\vec{a}-\vec{c}$
3) $\vec{b}=2 \vec{a}+\vec{c}$
4) $\vec{b}=\vec{a}+2 \vec{c}$

Key: 1

Solution:

$$
\overline{Q S}=\overline{Q R}+\overline{R S}
$$

$$
\begin{aligned}
&(Q S) \hat{b}=(Q R) \bar{a}+(R S) \hat{c} \\
& \hat{b}=\hat{a}+\frac{R S}{Q S} \cdot \hat{C} \\
& \hat{b}=\hat{a}+2 \frac{R T}{Q S} \cdot \hat{C} \\
& \bar{b}=\hat{a}-2(\hat{a} \cdot \hat{c}) \hat{c}
\end{aligned}
$$

3. A cord is wound round the circumference of wheel of radius r. The axis of the wheel is horizontal and the moment of inertia about it is I. A weight mg is attached to the cord at the end. The weight falls from rest. After falling through a distance ' h ', the square of angular velocity of wheel will be:
1) $\frac{2 m g h}{1+m r^{2}}$
2) $2 g h$
3) $\frac{2 m g h}{1+2 m r^{2}}$
4) $\frac{2 g h}{1+m r^{2}}$

Key: 4

Solution: Decrease In P.E of block = Increase in K.E of wheel + block
$\mathrm{mgh}=\frac{1}{2} m v^{2}+\frac{1}{2} I W^{2}$ where $\mathrm{v}=\mathrm{rw}$
$\mathrm{mgh}=\frac{1}{2} m r^{2} w^{2}+\frac{1}{2} I W^{2}$
$W^{2}=\frac{2 m g h}{I+m r^{2}}$
04. A scooter accelerates from rest for time t_{1} at constant rate a_{1} and then retards at constant rate a_{2} for time t_{2} and comes to rest. The correct value of $\frac{t_{1}}{t_{2}}$ will be :

1) $\frac{a_{1}}{a_{2}}$
2) $\frac{a_{2}}{a_{1}}$
3) $\frac{a_{1}+a_{2}}{a_{1}}$
4) $\frac{a_{1}+a_{2}}{a_{2}}$

Key: 2

Solution:

$V=a_{1} t_{1}$
$\mathrm{V}=\mathrm{a}_{2} \mathrm{t}_{2}$
$a_{1} t_{1}=a_{2} t_{2}$
$\frac{t_{1}}{t_{2}}=\frac{a_{2}}{a_{1}}$
05. Draw the output signal Y in the given combination of gates.
A

1)

2)

3)

4)

Key: 4

Solution:

A	B	$\mathrm{Y}=\overline{\bar{A}+B}$
1	0	1
1	1	0
0	0	
1	1	0
1	0	1

6. Given below are two statements : one is labeled as Assertion A and the order is labeled as Reason R. Assertion A : For a simple microscope, the angular size of the object equals the angular size of the image. Reason R : Magnification is achieved as the small object can be kept much closer to the eye than 25 cm and hence it subtends a large anlge. In the light of the above statements, choose the most appropriate answer from the options given below :
1) Both A and R are true and R is the correct explanation of A
2) Both A and R are true but R is Not the correct explanation of A
3) A is false but R is true
4) A is true but R is false

Key:3

Solution:

Conceptual
07. A radioactive sample is undergoing α decay. At any time t_{1}, its activity is A and another time t_{2}, the activity is $\frac{A}{5}$. What is the average life time for the sample?

1) $\frac{t_{2}-t_{1}}{\operatorname{In} 5}$
2) $\frac{\operatorname{In} 5}{t_{2}-t_{1}}$
3) $\frac{t_{1}-t_{2}}{\operatorname{In} 5}$
4) $\frac{\operatorname{In}\left(t_{2}+t_{1}\right)}{2}$

Key:1

Solution:

$$
\begin{aligned}
& \frac{A}{5}=A \cdot e^{-\lambda\left(t_{2}-t_{1}\right)} \\
& \ln 5=\lambda\left(t_{2}-t_{1}\right) \\
& \lambda=\frac{\ln 5}{t_{2}-t_{1}} \quad T=\frac{1}{\lambda}=\frac{t_{2}-t_{1}}{\ln 5}
\end{aligned}
$$

8. A tuning fork A of unknown frequency produces 5 beats/s with a fork of known frequency 340 Hz . When fork A is filed, the beat frequency decreases to 2beat/s. What is the frequency of fork A ?
1) 338 Hz
2) 335 Hz
3) 342 Hz
4) 345 Hz

Key:2

Solution:

$\Delta f=5$
$\Delta f^{1}=2$

$\therefore f_{A}=335 \mathrm{~Hz}$
9. An inclined plane making an angle of 30° with the horizontal is placed in a uniform horizontal electric field $200 \frac{N}{C}$ as shown in the figure. A body of mass 1 kg and charge 5 mC is allowed to slide down from rest at a height of 1 m . If the coefficient of friction is 0.2 . Find the time taken by the body to reach the bottom.

$$
\left[g=9.8 m / s^{2} ; \sin 30^{\circ}=\frac{1}{2} ; \cos 30^{\circ}=\frac{\sqrt{3}}{2}\right]
$$

1) 0.92 s
2) 1.3 s
3) 2.3 s
4) 0.46 s

Key:2

Solution:

$N=m g \cos \theta+q E \sin \theta$

$$
a=\frac{m g \sin \theta-[q E \cos \theta+\mu N]}{m}
$$

$m a=m g \sin \theta-[q E \cos \theta+\mu(m g \cos \theta+q E \sin \theta)]$
$a=g \sin \theta-\left[\frac{q E \cos \theta}{m}+\mu\left(q \cos \theta+\frac{q E \sin \theta}{m}\right)\right]$
$a=9.8 \times \frac{1}{2}-\left[\frac{1 \times \frac{\sqrt{3}}{2}}{1}+\frac{1}{5}\left(4.9 \times \frac{\sqrt{3}}{2}+1 \times \frac{1}{2}\right)\right]$
$=4.9-\frac{\sqrt{3}}{2}-\left(\frac{4.9 \times \sqrt{3}}{10}-\frac{1}{10}\right) \quad=4.9\left[1-\frac{\sqrt{3}}{10}\right]-\left(\frac{5 \sqrt{3}+1}{10}\right) \quad t=\sqrt{\frac{21}{a}} \approx 1.31 \mathrm{~s}$
10. If ' C ' and ' V ' represent capacity and voltage respectively then what are the dimensions of λ where $\mathrm{C} / \mathrm{V}=\lambda$?

1) $\left[M^{-2} L^{-4} I^{3} T^{7}\right]$
2) $\left[M^{-1} L^{-3} I^{-2} T^{-7}\right]$
3) $\left[M^{-3} L^{-4} I^{3} T^{7}\right]$
4) $\left[M^{-2} L^{-3} I^{2} T^{6}\right]$

Key:1

Solution:

$$
\begin{array}{ll}
\mathrm{P}=\mathrm{Vi} & U=\frac{9^{2}}{2 c} \\
\mathrm{~V}=\frac{M^{1} L^{2} T^{-3}}{I^{1}} C=\frac{I^{2} T^{2}}{M^{1} L^{-2} T^{-2}} & =M^{1} L^{2} T^{-3} I^{-1} \\
\frac{C}{V}=\frac{M^{-1} L^{-2} T^{4} I^{2}}{M^{1} L^{2} T^{-3} I^{-1}} & =M^{-2} L^{-4} T^{7} I^{3}
\end{array}
$$

11. Two masses A and B, each of mass M are fixed together by a massless spring. A force acts on the mass B as shown in figure. If the mass A starts moving away from mass B with acceleration ' a ', then the acceleration of mass B will be:

1) $\frac{M F}{F+M a}$
2) $\frac{F+M a}{M}$
3) $\frac{M a-F}{M}$
4) $\frac{F-M a}{M}$

Key:4

Solution:

Gsytem $=\frac{F}{2 M}$ for mass A
$G_{A}=\frac{K x}{m} \quad \mathrm{kx} \longleftarrow$
$a_{B}=\frac{F-K x}{m}$

$$
a_{B}=\frac{F-M a}{m}
$$

12. A particle executes S.H.M. the graph of velocity as a function of displacement is :
1) an ellipse
2) a circle
3) a helix
4) a parabola

Key:1

Solution:

$$
V=W \sqrt{A^{2}-x^{2}} \quad \frac{V^{2}}{(W A)^{2}}+\frac{x^{2}}{w^{2}}=1 \quad \therefore \text { Graph is ellipse }
$$

13. Find the peak current and resonant frequency of the following circuit (as shown in figure).

1) 0.2 A and 50 Hz
2) 2 A and 50 Hz
3) 0.2 A and 100 Hz
4) 2 A and 100 Hz

Key:1

Solution:

$$
\begin{array}{ll}
X_{c}=W L=100 \times 10^{-1}=10 \mathrm{~Hz} & X_{c}=\frac{1}{W C}=\frac{1}{100 \times 10^{-4}}=100 \mathrm{~Hz} \\
Z=\sqrt{\left(X_{C}-X_{L}\right)^{2}+R^{2}}=150 \mathrm{~Hz} & \\
f_{o}=\frac{V_{o}}{Z}=\frac{30}{150}=0.2 \mathrm{~A} & \\
W_{o}=2 \pi f_{o}=\frac{1}{\sqrt{L C}} & f_{o}=\frac{1}{2 \pi \sqrt{L C}}=50 \mathrm{~Hz}
\end{array}
$$

14. Given below are two statements:

Statement I : A second's pendulum has a time period of 1 second
Statement II: It takes precisely one second to move between the two extreme positions.

In the light of the above statements, choose the correct answer from the options given

1) Both Statement I and Statement $I I$ are true
2) Both Statement I and Statement $I I$ are false
3) Statement I is true but Statement $I I$ is false
4) Statement I is false but Statement $I I$ is true

Key: 4

Solution:

Conceptual

15. An aeroplane, with its wings spread 10 m , is flying at a speed of $180 \mathrm{~km} / \mathrm{h}$ in a horizontal direction. The total intensity of earth's field at that part is $2.5 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$ and the angle of dip is 60°. The emf induced between the tips of the plane wings will be \qquad
1) 108.25 mV
2) 54.125 Mv
3) 88.37 mV
4) 62.50 mV

Key: 1

Solution:

$$
B_{v}=B_{e} \sin \delta \quad=2.5 \times 10^{-4} \times \frac{\sqrt{3}}{2}
$$

Emf induced $=B_{v} l v \quad=108.25 \mathrm{mV}$
16. Given below are two statements:

Statement I : An electric dipole is placed at the centre of a hollow sphere. The flux of electric field through the sphere is zero but the electric field is not zero anywhere in the sphere.
Statement II : If R is the radius of a solid metallic sphere and Q be the total charge on it. The electric field at any point on the spherical surface of radius $r(<R)$ is zero but the electric flux passing through this closed spherical surface of radius r is not zero.

In the light of the above statements, Choose the correct answer from the options given below :

1) Statement I is false but Statement $I I$ is true
2) Both Statement I and Statement $I I$ are true
3) Statement I is true but Statement $I I$ is false
4) Both Statement I and Statement $I I$ are false

Key: 4

Solution:

Conceptual
17. A wire of 1Ω has a length of 1 m . It is stretched till its length increases by 25%. The percentage change in resistance to the nearest integer is :

1) 76%
2) 12.5%
3) 25%
4) 56%

Key: 4

Solution:

On stretching,
$R \alpha l^{2}$
$\frac{R_{1}}{R_{2}}=\frac{l^{2}}{(1.25 l)^{2}}=\frac{1}{1.5625}$
$R_{2}=R_{1}[1+0.56] \quad \therefore \frac{\Delta R}{R}+100=56 \%$
18. The trajectory of a projectile in a vertical plane is $y=\alpha x-\beta x^{2}$, where α and β are constants and $\mathrm{x} \& \mathrm{y}$ are respectively the horizontal and vertical distances of the projectile from the point of projection. The angle of projection θ the maximum height attained H are respectively given by :

1) $\tan ^{-1} \alpha, \frac{4 \alpha^{2}}{\beta}$
2) $\tan ^{-1}\left(\frac{\beta}{\alpha}\right), \frac{\alpha^{2}}{\beta}$
3) $\tan ^{-1} \alpha, \frac{\alpha^{2}}{4 \beta}$
4) $\tan ^{-1} \beta, \frac{\alpha^{2}}{2 \beta}$

Key:3

Solution:

$$
\begin{aligned}
& y=\alpha x-\beta x^{2} \\
& y=(\tan \theta) x-\left(\frac{g}{2 x^{2} \cos ^{2} \theta}\right) x^{2} \\
& \tan \theta=\alpha \quad \Rightarrow \theta=\tan ^{-1}[\alpha] \\
& \frac{\alpha^{2}}{4 \beta}=\frac{\tan ^{2} \theta}{4\left(\frac{g}{2 u^{2} \cos ^{2} \theta}\right)}=H
\end{aligned}
$$

19. The length of metallic wire is l_{1} when tension in it is T_{1}. It is l_{2} when the tension is T_{2}.

The original length of the wire will be :

1) $\frac{l_{1}+l_{2}}{2}$
2) $\frac{T_{2} l_{1}-T_{1} l_{2}}{T_{2}-T_{1}}$
3) $\frac{T_{1} l_{1}-T_{2} l_{2}}{T_{2}-T_{1}}$
4) $\frac{T_{2} l_{1}+T_{1} l_{2}}{T_{1}+T_{2}}$

Key:2

Solution:

For a wire meter some tension,

$$
y=\frac{T l}{A e} \quad \Rightarrow e \alpha T
$$

$\frac{l_{1}-l_{o}}{l_{2}-l_{0}}=\frac{T_{1}}{T_{2}} \quad$ Solving We get
$l_{o}=\frac{l_{1} T_{2}-l_{2} T_{1}}{T_{2}-T_{1}}$
20. The recoil speed of a hydrogen atom after it emits a photon in going from $\mathrm{n}=5$ state to $\mathrm{n}=1$ state will be :

1) $4.17 \mathrm{~m} / \mathrm{s}$
2) $3.25 \mathrm{~m} / \mathrm{s}$
3) $4.34 \mathrm{~m} / \mathrm{s}$
4) $2.19 \mathrm{~m} / \mathrm{s}$

Key: 2

Solution:

$$
\begin{aligned}
& M V_{\text {recoil }}=\frac{h}{\lambda}=R h\left[\frac{1}{1^{2}}-\frac{1}{5^{2}}\right] \\
& V_{\text {recoil }}=\frac{R h}{m}\left[\frac{24}{25}\right] \approx 3.85 \mathrm{~ms}^{-1}
\end{aligned}
$$

(NUMERICAL VALUE TYPE)

This section contains 10 questions. Each question is numerical value type. For each question, enter the correct numerical value (in dedimal notation, truncated/ rounded-off to second decimal place. (e.g. 6.25, 7.00, $0.33,30,30.27,127.30$). Attempt any five questions out of 10.
Marking scheme: +4 for correct answer, 0 if not attempted and 0 inall other cases.
21. A point source of light S, placed at a distance 60 cm infront of the centre of a plane mirror of width 50 cm , hangs vertically on a wall. A man walks infront of the mirror along a line parallel to the mirror a distance 1.2 m from it (see in the figure). The distance between the extreme points where he can see the image of the light source in the mirror is
\qquad cm.

Key: 1501

Solution:

$\tan \theta=\frac{25}{60}=\frac{4}{120}$

\therefore Totallength $=3 \times 501 \mathrm{~m}$

$$
=1501 \mathrm{~m}
$$

22. 27 similar drops of mercury are maintained at 10 V each. All these spherical drops combine into a single big drop. The potential energy of the bigger drop is \qquad times that of a smaller drop.

Key: 9

Solution:

$$
R^{3}=n r^{3} \quad V_{b i g}=\frac{1}{4 n e r} \cdot \frac{Q}{R}=\frac{K \cdot[n q]}{n^{\frac{1}{3}} \gamma} \quad V_{b i g}=n^{\frac{2}{3}} V s=9 V_{s}
$$

23. Time period of a simple pendulum is T. The time taken to complete $\frac{5}{8}$ oscillations starting from mean position is $\frac{\alpha}{\beta} T$. The value of α is \qquad

Key: 7

Solution:
$\frac{5}{8}$ of oscillation means $\frac{5}{8}(4 \mathrm{~A})=\frac{5 A}{2}$

$$
\Rightarrow t=\frac{7 T}{12} \quad \therefore \alpha=7
$$

24. If the highest frequency modulating a carrier is 5 kHz , then the number of $A M$ broadcast stations accommodated in a 90 kHz bandwidth are \qquad
Key: 18

Solution:

$$
\mathrm{N}=\frac{90}{5}=18
$$

25. The zener diode has a $\mathrm{V}_{\mathrm{z}}=30 \mathrm{~V}$. The current passing through the diode for the following circuit is \qquad mA .

Key: 9
Solution:
$i=\frac{10}{4 \times 10^{3}}=15 \mathrm{~mA}$
$i_{l}=\frac{3 v}{5 \times 10^{3}}=6 m a$

$$
i_{z}=9 m A
$$

26. 1 mole of rigid diatomic gas performs a work of $\frac{Q}{5}$ when heat Q is supplied to it . The molar heat capacity of the gas during this transformation is $\frac{x R}{8}$.The value of x is \qquad [$\mathrm{R}=$ universal gas constant]
Key: 25
Solution:
Di atomic
$\gamma=\frac{7}{5} \quad \Delta u=\frac{4 u}{5}=1 \times \frac{5 R}{2} \Delta T \quad \frac{1}{n} \cdot \frac{u}{\Delta T}=\frac{25 R}{8} \quad x=25$
27. Two stream of photons, possessing energies equal to twice and ten times the work function of metal are incident on the metal surface successively. The value of ratio of maximum velocities of the photoelectrons emitted in the two respective cases $x: y$.The value of x is \qquad
Key: 1

Solution:

$2 W=W+\frac{1}{2} m V_{1}^{2} \quad 10 W=W+\frac{1}{2} m V_{2}^{2}$
$\frac{1}{9}=\frac{V_{1}^{2}}{V_{2}{ }^{2}} \quad \Rightarrow \frac{V_{1}}{V_{2}}=\frac{1}{3}=\frac{x}{y}$
$x=1$
28. In the reported figure of earth, the value of acceleration due to gravity is same at point A and C but it is smaller than that of its value at point B (surface of the earth). The value of $O A$: AB will be $x: y$. The value of x is \qquad

Key: 4

Solution:

$g_{n}=g \frac{R^{2}}{(R+h)^{2}}=\frac{g \cdot R^{2}}{\left(\frac{3 R}{2}\right)^{2}}=\frac{4 g}{9}$
$g_{d}=g\left[1-\frac{d}{R}\right]=\frac{4 g}{9} \quad \frac{5}{9}=\frac{d}{R} \Rightarrow d=\frac{5 R}{9}$ $O A=x=\frac{4 R}{9}$
$A B=\frac{5 R}{9}$
$O A: A B=4: 5$
$x=4$
29. The volume V of a given mass of monoatomic gas changes with temperature T according to the relation $V=K T^{\frac{2}{3}}$. The workdone when temperature changes by 90 K will be xR The value of x is \qquad
[$\mathrm{R}=$ universal gas constant]
Key: 60
Solution: $P V=n R T \quad V=K\left[\frac{p v}{n R}\right]^{\frac{2}{3}} P^{\frac{2}{3}} V^{\frac{1}{3}}=$ cons $\tan t \quad P V^{\frac{1}{2}}=\operatorname{cons} \tan t W=\frac{R A T}{1-x}=60 R$
30. A particle executes S.H.M with amplitude 'a' and time period ' T '. The displacement of the particle when its speed is half of maximum speed is $\frac{\sqrt{x} a}{2}$. The value of x is \qquad
Key: $\Rightarrow x=\frac{\sqrt{3} A}{2}$

Solution:

$$
\begin{array}{cll}
V=W \sqrt{A^{2}-x^{2}} & \text { where } \mathrm{V}=\frac{A W}{2} & \frac{A W}{2}=W \sqrt{A^{2}-x^{2}} \quad \frac{A^{2}}{4}=A^{2}-x^{2} \\
x^{2}=\frac{3 A^{2}}{4} & \Rightarrow x=\frac{\sqrt{3} A}{2}
\end{array}
$$

Thissedion contains 20 multiple dhoice questions. Each questionhas4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.
Marking scheme: $\mathbf{+ 4}$ for comectanswer, $\mathbf{0}$ if not attempted and $\mathbf{- 1}$ in all other cases.
31. Given below are two statements: one labeled as Assertion A and the other is labeled as

Reason R.

Assertion: In TII_{3}, isomorphous to CsI_{3}, the metal is present in +1 oxidation state.
Reason:TI metal has fourteen f electrons in its electronic configuration.
In the light of the above statements, choose the most appropriate answer from the options given below.

1) Both A and R are correct and R is the correct explanation of A
2) Both A and R are correct and R is NOT the correct explanation of A
3) A is correct but R is not correct
4) A is not correct but R is correct

Key:2

Solution: 2

32. Ceric ammonium nitrate and $\mathrm{CHCl}_{3} /$ alc. KOH are used for the identification of functional groups present in \qquad and \qquad respectively.
1) amine, alcohol
2) amine, phenol
3) alcohol, phenol
4) alcohol, amine

Key:4

Solution:
i) Ceric ammonium nitrate (CAN)

$$
\text { alcohol } \xrightarrow[(m i l d)]{(O)} \text { aldehyde }
$$

$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH} \longrightarrow \mathrm{R}-\mathrm{CHO}$
ii) Carbyl amine reaction.
33. The correct order of electron gain enthalpy is:

1) $S>O>S e>T e$
2) $\mathrm{Te}>\mathrm{Se}>S>O$
3) $S>S e>T e>O$
4) $O>S>S e>T e$

Key:3

Solution:

$$
O<T e<S e<S
$$

34. Calgon is used for water treatment. Which of the following statements is NOT true and Calgon?
1) Calgon contains the $2^{\text {nd }}$ most abundant element by weight in the Earth's crust.
2) It doesnot remove Ca^{2+} ion by precipitation.
3) It is also known as Graham's salt
4) It is polymeric compound and is water soluble.

Key:1

Solution:

$$
N a_{2}\left[N a_{4} P_{6} O_{18}\right] \rightarrow 2 N a^{+}+\left[N a_{4} P_{6} O_{18}\right]^{-2}
$$

35.

Considering the above reaction, the major product among the following is:
1)

2)

3)

4)

Key: 2

Solution:

36. The nature of charge on resulting colloidal particles when FeCl_{3} is added to excess of hot water is :

1) sometimes positive and sometimes negative
2) positive
3) negative
4) neutral

Key: 2

Solution:

When FeCl_{3} added to excess of hot water, a positively charged sol is formed due to adsorption of Fe^{3+} ions.
37. Seliwanoff test and Xanthroproteic test are used for the identification of \qquad and respectively.

1) ketosese, proteins
2) proteins, ketoses
3) ketoses, aldoses
4) aldoses, ketoses

Key:1

Solution:

$\underline{\text { Seliwan off test }} \rightarrow$ distinguish test for carbohydrates.
\underline{X} anthoprotic test: \rightarrow Distinguish test for proteins
38. Match List - I with List - II.

List - I

(Molecule)
a) $\mathrm{Ne} e_{2}$
b) N_{2}
c) F_{2}
d) O_{2}

Choose the correct answer from the options given below:

1) $(a) \rightarrow(i),(b) \rightarrow(i i), c \rightarrow(i i i), d \rightarrow(i v)$
2) $(a) \rightarrow(i v),(b) \rightarrow(i i i), c \rightarrow(i i), d \rightarrow(i)$
3) $(a) \rightarrow(i i),(b) \rightarrow(i), c \rightarrow(i v), d \rightarrow(i i i)$
4) $(a) \rightarrow(i i i),(b) \rightarrow(i v), c \rightarrow(i), d \rightarrow(i i)$

Key:4

Solution:

$$
\mathrm{Ne}_{2} \rightarrow B O \rightarrow 0 \quad \mathrm{~N}_{2} \rightarrow B O \rightarrow 3 \quad \mathrm{O}_{2} \rightarrow B O \rightarrow 2 \quad F_{2} \rightarrow B O \rightarrow 1
$$

39. A. Phenyl methanamine
B. N, N-Dimethylaniline
C. N-Methyl aniline
D. Benzenamine

Choose the correct order of basic nature of the above amines.

1) $D>C>B>A$
2) $A>B>C>D$
3) $A>C>B>D$
4) $D>B>C>A$

Key:2
Solution:

$-3^{o}-$

$-2^{\circ}-$
(C)

(D)
(B)

$$
A>B>C>D
$$

40. Identify A in the given chemical reaction

1)

3)

2)

4)

Key:2

Solution:

Intermolecular Aldol

41. Identify A in the following chemical reaction.

1)

2)

3)

4)

Key:4

Solution:

42. Which pair of oxides is acidic in nature?

1) $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{CaO}$
2) $\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$
3) $\mathrm{CaO}, \mathrm{SiO}_{2}$
4) $\mathrm{N}_{2} \mathrm{O}, \mathrm{BaO}$

Key: 2

Solution:

Oxide		Nature CaO
ZnO	\longrightarrow	Basic
$\mathrm{B}_{2} \mathrm{O}_{3}$	\longrightarrow	Amphoteric
SiO_{2}	\longrightarrow	acidic
acidic		

43. In $\stackrel{1}{C} H_{2}=\stackrel{2}{C}=\stackrel{3}{C} H-\stackrel{4}{C} H_{3}$ molecule, the hybridization of carbon $1,2,3$ and 4 respectively, are:
1) $s p^{2}, s p^{3}, s p^{2}, s p^{3}$
2) $s p^{2}, s p, s p^{2}, s p^{3}$
3) $s p^{2}, s p^{2}, s p^{2}, s p^{3}$
4) $s p^{3}, s p, s p^{3}, s p^{3}$

Key: 2

Solution:

44. Match List - I with List - II

List - I

a)

Siderite i) Cu
b) Calamine
ii) Ca
c) Malachite
iii) Fe
d) Cryolite
iv) Al
v) Zn

Choose the correct answer from the options given below:

1) $(a) \rightarrow(i),(b) \rightarrow(i i),(c) \rightarrow(v),(d) \rightarrow(i i i)$
2) $(a) \rightarrow(i),(b) \rightarrow(i i),(c) \rightarrow(i i i),(d) \rightarrow(i v)$
3) $(a) \rightarrow(i i i),(b) \rightarrow(i),(c) \rightarrow(v),(d) \rightarrow(i i)$
4) $(a) \rightarrow(i i i),(b) \rightarrow(v),(c) \rightarrow(i),(d) \rightarrow(i v)$

Key:4

Solution:

Siderite $\longrightarrow \underline{\mathrm{FeCO}} 3$
Calamine $\longrightarrow \underline{\mathrm{ZnCO}_{3}}$
Malachite $\longrightarrow \underline{\mathrm{Cu}}(\mathrm{OH})_{2} . \mathrm{CuCO}_{3}$
Cryolite $\longrightarrow N a_{3} \underline{A l} F_{6}$
45. Identify A in the given reaction.

1)

3)

Key:2

Solution:

46. $2,4-$ DNP test can be used to identify:

1) aldehyde
2) halogens
3) amine
4) ether

Key:1

Solution:

$2, \mathrm{D}, \mathrm{DNP}$ test is the test for carbonyl compounds (or) Aldehydes and ketones.
47. Match List - I with List - II.

List - I

List - II
a)Sucrose
i) $\beta-D-$ Galactose and $\beta-D-$ Glucose
b)Lactose
ii) $\alpha-D$-Glucose and $\beta-D$-Fructose
c)Maltose
iii) $\alpha-D-$ Glucose and $\alpha-D-$ Glucose

Choose the correct answer from the options given below:

1) $(a) \rightarrow(i),(b) \rightarrow(i i i),(c) \rightarrow(i i)$
2) $(a) \rightarrow(i i i),(b) \rightarrow(i),(c) \rightarrow(i i)$
3) $(a) \rightarrow(i i),(b) \rightarrow(i),(c) \rightarrow(i i i)$
4) $(a) \rightarrow(i i i),(b) \rightarrow(i i),(c) \rightarrow(i)$

Key:3

Solution:

a) Sucrose $\rightarrow \alpha-$ Glucose $\& \beta$ - fructose
b) Lactose $\rightarrow \beta$ - Galactose \& β - Glucose
c) Maltose $\rightarrow \alpha-$ Glucose $\& \alpha-$ Glucose
48. Match List - I with List - II.

List - I

a)Sodium Carbonate
b)Titanium
c) Chlorine
d) Sodium hydroxide

List - II

i) Deacon
ii) Castner-Kellner
iii) van-Arkel
iv) Solvay

Choose the correct answer from the options given below:

1) $(a) \rightarrow(i i i),(b) \rightarrow(i i),(c) \rightarrow(i),(d) \rightarrow(i v)$
2) $(a) \rightarrow(i v),(b) \rightarrow(i),(c) \rightarrow(i i),(d) \rightarrow(i i i)$
3) $(a) \rightarrow(i),(b) \rightarrow(i i i),(c) \rightarrow(i v),(d) \rightarrow(i i)$
4) $(a) \rightarrow(i v),(b) \rightarrow(i i i),(c) \rightarrow(i),(d) \rightarrow(i i)$

Key: 4

Solution:

a) $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad \rightarrow$ Solvay process
b) $T i \quad \rightarrow$ van - Arkel process
c) $\mathrm{Cl}_{2} \rightarrow$ Deacons process
d) $\mathrm{NaOH} \quad \rightarrow$ Castner - Kellner process
49. Match List-I with List-II

List-I

List-II

i) Wurtz reaction
ii) Sandmeyer reaction
c) $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+2 \mathrm{Na} \xrightarrow{\text { Ether }} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{C}_{2} \mathrm{H}_{5}+2 \mathrm{NaCl}$
iii) Fitting reaction
d) $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+2 \mathrm{Na} \xrightarrow{\text { Ether }} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}_{6} \mathrm{H}_{5}+2 \mathrm{NaCl}$
iv) Gattermann reaction

Choose the correct answer from the options given below:

1) $(a) \rightarrow(i i i),(b) \rightarrow(i v),(c) \rightarrow(i),(d) \rightarrow(i i)$
2) $(a) \rightarrow(i i),(b) \rightarrow(i),(c) \rightarrow(i v),(d) \rightarrow(i i i)$
3) $(a) \rightarrow(i i i),(b) \rightarrow(i),(c) \rightarrow(i v),(d) \rightarrow(i i)$
4) $(a) \rightarrow(i i),(b) \rightarrow(i v),(c) \rightarrow(i),(d) \rightarrow(i i i)$

Key: 4

Solution:

a)

b)

c) $2 \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}+2 \mathrm{Na} \xrightarrow{\text { ether }} \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5}+2 \mathrm{NaCl}$
d)

50. Which of the following forms of hydrogen emits low energy β^{-}particles?

1) Tritium ${ }_{1}^{3} \mathrm{H}$
2) $\operatorname{Protium}{ }_{1}^{3} \mathrm{H}$
3) Deuterium ${ }_{1}^{2} \mathrm{H}$
4) Proton H^{+}

Key:1

Solution:

Conceptual

(NUMERICALVALUE TYPE)

This section contains 10 questions. Each question is numerical value type. For each question, enter the correct numerical value (in deainal notation, truncated/ rounded-off to second decimal place. (e.g. 6.25, 7.00, $0.33,30,30.27,127.30$). Attempt any five questions out of 10.
Marking scheme: +4 for correct answer, 0 if not attempted and 0 in all other cases.
51. The number of octahedral voids per lattice site in a lattice is \qquad (Rounded off to the nearest integer)
Key: 1
Solution:
No. of lattice points/units cell of FCC lattice $=4$
No. of octahedral voids $=4$
\therefore No. of $O V_{s}$ / lattice point $=1$
52. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_{4}^{-}to " A " the oxidation state of sulphur in ' A ' is \qquad
Key:6
Solution:

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{-2}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2}+\mathrm{SO}_{4}^{+6}
$$

(A)
53. If the activation energy of a reaction is $80.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the fraction of molecules at 700 K , having enough energy to react to form products is e^{-x}. The value of x is \qquad _. (Rounded off to the nearest integer) [Use $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]

Key:14

Solution:

Fraction of reactant molecules having energy equal to or greater than threshold $=e^{-E a / R T}$
$=e^{-\frac{80900}{8.31 \times 700}}$
$=e^{-14}$
54. The NaNO_{3} weighed out to make 50 mL of an aqueous solution containing $70.0 \mathrm{mg} \mathrm{Na}+$ per mL is \qquad g. (Rounded off to the nearest integer)
[Given: Atomic weight in $\mathrm{g} \mathrm{mol}^{-1}-\mathrm{Na}: 23 ; N: 14 ; O: 16$]
Key:13
Solution:
$\mathrm{NaNO}_{3} \rightarrow \mathrm{Na}^{+}+\mathrm{NO}_{3}^{-}$
1mole
$85 \mathrm{~g} \longrightarrow 23 \mathrm{~g}$
$85 \mathrm{mg} \longrightarrow 23 \mathrm{mg}$
$? \longrightarrow 70 \mathrm{mg}$
$=\frac{70 \times 85}{23} m g$
Mass of NaNO_{3} required for 1 mL of solution $=\frac{70 \times 85}{23} \mathrm{mg}$
For 50 mL of solution, mass of $\mathrm{NaNO}_{3}=\frac{70 \times 85}{23} \times 50$

$$
\begin{aligned}
& =12934 \mathrm{mg} \\
& =12.93 \mathrm{~g} \\
& \approx 13 \mathrm{~g}
\end{aligned}
$$

55. The pH of ammonium phosphate solution, if $p k_{a}$ of phosphoric acid and $p k_{b}$ of ammonium hydroxide are 5.23 and 4.75 respectively, is \qquad .

Key: 7.24

Solution:

For aq. Solution of salt of weak acid with weak base,

$$
\begin{aligned}
p H=\frac{1}{2}\left(p k_{w}\right. & \left.+p k_{a}-p k_{b}\right) \\
& =7+\frac{5.23}{2}-\frac{4.75}{2}=7+2.62-2.38=7.24
\end{aligned}
$$

56. The average $S-F$ bond energy in $\mathrm{kJ} \mathrm{mol}^{-1}$ of $S F_{6}$ \qquad . (Rounded off to the nearest integer).
[Given: The values of standard enthalpy of formation of $S F_{6}(g), S(g)$ and $F(g)$ are $-1100,275$ and $80 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.]
Key: 309.17

Solution:

Hess' law:
$-1100=275+480+6 E_{S-F}$
$6 E_{S-F}=-1855$
$E_{S-F}=-309.17 \mathrm{~kg} / \mathrm{mol}$
$=+309.17 \mathrm{~kJ} / \mathrm{mol}$
57. The number of stereoisomers possible for $\left[\mathrm{Co}(\mathrm{OX})_{2}(\mathrm{Br})\left(\mathrm{NH}_{3}\right)\right]^{2-}$ is \qquad [OX = oxalate].
Key: 3
Solution:

58. When 12.2 g of benzoic acid is dissolved in 100 g of water, the freezing point solution was found to be $-0.93^{\circ} \mathrm{C}\left(\mathrm{K}_{f}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{Kkg} \mathrm{mol}^{-1}\right)$. The number (n) of benzoic acid molecules associated (assuming 100% association) is \qquad .

Key: 2

Solution:
$\Delta T_{f}=i k_{f} m$
$0.93=i \times 1.86 \times \frac{12.2 \times 1000}{122 \times 100}$
$i=0.5$
$\alpha=\frac{1-i}{1-\frac{1}{n}}$
$1=\frac{1-0.5}{1-1 / n}$
$1-\frac{1}{n}=1-0.5$
$n=2$
59. Emf of the following cell at 298 K in V is $x \times 10^{-2}$.

$$
Z n\left|Z n^{2+}(0.1 M) \| A g^{+}(0.01 M)\right| A g
$$

The value of x is \qquad . (Round off to the nearest integer)
[Give: $E_{Z n^{2+} / Z n}^{\theta}=-0.76 \mathrm{~V} ; E_{A g^{+} / A g}^{\theta}=+0.80 \mathrm{~V} ; \frac{2.303 R T}{F}=0.059$]
Key: 153

Solution:

$$
\begin{aligned}
& \mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.1 M) \| A g^{+}(0.01 M)\right| A g \\
& E_{\text {cell }}^{o}=E_{C}^{o}-E_{A}^{o}=0.80-(-0.76)=+1.56 V
\end{aligned}
$$

Cell $l x n: Z n(s)+2 A g^{+}(a q) \rightarrow \stackrel{2+}{Z n}(a q)+2 A g(s)(n=2)$
$Q_{R}=\frac{\left[\mathrm{Zn}^{2+}\right]}{\left[A g^{+}\right]^{2}}$
$E_{\text {cell }}=E_{\text {call }}^{o}-\frac{0.059}{n} \log Q_{R}$
$=1.56-\frac{0.059}{2} \log \frac{0.1}{0.01}$
$=1.56-0.0295=1.5305 \mathrm{~V}$
$=153.05 \times 10^{-2} V$
$=153 \times 10^{-2} \mathrm{~V}$
60. A ball weighing 10 g is moving with a velocity of $90 \mathrm{~ms}^{-1}$. If the uncertainty in its velocity is 5%, then the uncertainty in its position is \qquad $\times 10^{-33} \mathrm{~m}$. (Rounded off to the nearest integer)
[Given: $h=6.63 \times 10^{-34} \mathrm{Js}$]

Key: 1.17

Solution:

$$
\begin{aligned}
& \Delta x . \Delta v=\frac{h}{4 \pi m} \\
& =\frac{6.626 \times 10^{-34} \mathrm{~J} \mathrm{sec}}{4 \times 3.14 \times 10 \times 10^{-3} \times 4.5} \frac{5}{100} \times 90=4.5 \\
& =\frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 10 \times 10^{-3} \times 4.5} \\
& =\frac{6.626 \times 10^{-34}}{565.2 \times 10^{-3}} \\
& =0.01172 \times 10^{-31} \\
& =1.17 \times 10^{-2} \times 10^{-31} \quad=1.17 \times 10^{-33} \mathrm{~m}
\end{aligned}
$$

This sedion contains 20 mitiple dhoice questions. Each questionhas4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct.
Marking scheme: $\mathbf{+ 4}$ for comectanswer, $\mathbf{0}$ if not attempted and $\mathbf{- 1}$ in all other cases.
61. Let L be a line obtained from the intersection of two planes $x+2 y+z=6$ and $y+2 z=4$ If point $\mathrm{P}(\alpha, \beta, \gamma)$ is the foot of perpendicular from $(3,2,1)$ on L , then the value of $21(\alpha+\beta+\gamma)$ equals

1) 68
2) 102
3) 142
4) 136

Key:2

Solution:

$x+2 t+z=6, y+z=4$
$x+2 y+z-6=0, y+z-4=0$
Solving the line is
$\frac{x+2}{1}=\frac{y-4}{-1}=\frac{z}{1}$
Any point on this line is $(\lambda-2,4-\lambda, \lambda)$
Foot of $\perp r$ from $(3,2,1)$ to the line is $p(\alpha, \beta, \gamma)$

$\therefore(\lambda-5) 5+(2-\lambda)(-1)+1(\lambda-1)=0 \Rightarrow 3 \lambda-8=0 \Rightarrow \lambda=\frac{8}{3}$
$\therefore p=\left(\frac{2}{3}, \frac{4}{3}, \frac{8}{3}\right)=(\alpha, \beta, \gamma) 21(\alpha+\beta+\gamma)=21\left(\frac{14}{3}\right)=98$
62. If the mirror image of the point $(1,3,5)$ with respect to the plane $4 x-5 y+2 z=8$ is (α, β, γ) then $5(\alpha+\beta+\gamma)$ equals:

1) 39
2) 41
3) 43
4) 47

Key: 4

Solution:

$$
\frac{\alpha-1}{4}=\frac{\beta-3}{-5}=\frac{\gamma-5}{2}=\frac{-2[4-15+10-8]}{16+25+4}=\frac{2}{5}
$$

$\therefore \alpha=\frac{13}{5}, \beta=1, \gamma=\frac{29}{5}$
$5(\alpha+\beta+\gamma)=47$
63. Let $A(1,4)$ and $B(1,-5)$ be two points. Let P be a point on the circle $(x-1)^{2}+(y-1)^{2}=1$ such that $(P A)^{2}+(P B)^{2}$ have maximum value, then the points, P, A and B lie on:

1) a hyperbola
2) a parabola
3) a straight line
4) an ellipse

Key:3

Solution:

$$
\begin{aligned}
& P=(1+\cos \theta, 1+\sin \theta), A=(1,4), B(1,-5) \\
& P A^{2}+P B^{2}=\cos ^{2} \theta+(\sin \theta-3)^{2}+\cos ^{2} \theta+(\sin \theta+6)^{2} \\
& =10-6 \sin \theta+37+12 \sin \theta \\
& =47+12 \sin \theta-6 \sin \theta=47+6 \sin \theta \\
& \left(P A^{2}+P B^{2}\right)_{\max }=(47+6 \sin \theta)_{\max } \Rightarrow \theta=\frac{\pi}{2}
\end{aligned}
$$

$$
\therefore p=(1,2)
$$

$\therefore p, A, B$ lie on line $x=1$
64. Let $f(x)=\sin ^{-1} x$ and $g(x)=\frac{x^{2}-x-2}{2 x^{2}-x-6}$. If $g(2)=\lim _{x \rightarrow 2} g(x)$, then the domain of the function $f o g$ is

1) $(-\infty,-2] \cup\left[-\frac{4}{3}, \infty\right)$
2) $(-\infty,-2] \cup[-1, \infty)$
3) $(-\infty,-1] \cup[2, \infty)$
4) $(-\infty,-2] \cup\left[-\frac{3}{2}, \infty\right)$

Key:1

Solution:

$$
\begin{aligned}
& f(x)=\sin ^{-1} x, g(x)=\frac{x^{2}-x-2}{2 x^{2}-x-6}, x \neq 2 \\
& g(2)=\lim _{x \rightarrow 2} g(x)=\frac{3}{7} \\
& (f \circ g)(x)=f(g(x))=\sin ^{-1}(g,(x)) \Rightarrow\left|\frac{x^{2}-x-2}{2 x^{2}-x-6}\right| \leq 1
\end{aligned}
$$

$\Rightarrow\left|\frac{(x-2)(x+1)}{(x-2)(2 x+3)}\right| \leq 1 \Rightarrow\left|\frac{x+1}{2 x+3}\right| \leq 1 \Rightarrow-1 \leq \frac{x+1}{2 x+3} \leq 1$
$\Rightarrow \frac{3 x+4}{2 x+3} \geq 0$ and $\frac{-2-x}{2 x+3} \leq 0 \Rightarrow x \in\left(-\infty,-\frac{3}{2}\right) \cup\left[\frac{-4}{3}, \infty\right)$
and $x \in(-\infty,-2] \cup(-3 / 2, \infty) \Rightarrow x \in(-\infty,-2] \cup\left[-\frac{4}{3}, \infty\right]$
65. Consider the following system of equations:
$x+2 y-3 z=a$
$2 x+6 y-11 z=b$
$x-2 y+7 z=c$
Where a, b and c are real constants. Then the system of equations:

1) has a unique solution for all a, b and c
2) has no solution for all a, b and c
3) has infinite number of solutions when $5 a=2 b+c$
4) has a unique solution when $5 a=2 b+c$

Key:3

Solution:

$$
x+2 y-3 z=a \quad 2 x+6 y-11 z=b \quad x-2 y+7 z=c
$$

$\Delta=\left|\begin{array}{ccc}1 & 2 & -3 \\ 2 & 6 & -11 \\ 1 & -2 & 7\end{array}\right|=0 \quad \Delta_{1}=\left|\begin{array}{ccc}a & 2 & -3 \\ b & 6 & -11 \\ c & -2 & 7\end{array}\right|=4(5 a-2 b-c)$
$\Delta_{2}=\left|\begin{array}{ccc}1 & a & -3 \\ 2 & b & -11 \\ 1 & c & 7\end{array}\right|=-5(5 a-2 b-c) \quad \Delta_{3}=\left|\begin{array}{ccc}1 & 2 & a \\ 2 & 6 & b \\ 1 & -2 & c\end{array}\right|=-2(5 a-2 b-c)$
\therefore If $5 a=2 b+c \Rightarrow \Delta_{1}=\Delta_{2}=\Delta_{3}=0 \Rightarrow$ Infinitely many solutions
66. If vectors $\overrightarrow{a_{1}}=x \hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{a_{2}}=\hat{i}-y \hat{j}+z \hat{k}$ are collinear, then a possible unit vector parallel to the vector $x \hat{i}+y \hat{j}+z \hat{k}$ is :

1) $\frac{1}{\sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$
2) $\frac{1}{\sqrt{2}}(-\hat{j}+\hat{k})$
3) $\frac{1}{\sqrt{2}}(\hat{i}-\hat{j})$
4) $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$

Key:1

Solution:

$\overrightarrow{a_{i}}=x \bar{i}-\bar{j}+\bar{k}, a_{2}=\bar{i}+y \bar{j}+z \bar{k}$ are collinear

$$
\frac{x}{1}=\frac{-1}{y}=\frac{1}{z}=\lambda \text { say }
$$

Required $=\frac{\lambda \bar{i}-\frac{1}{\lambda} \bar{j}+\frac{1}{\lambda} E}{\sqrt{\lambda^{2}+\frac{1}{\lambda^{2}}+\frac{1}{\lambda^{2}}}}$
for $\lambda=1=\frac{\bar{i}-\bar{j}+\bar{k}}{\sqrt{3}}$
67. Let $F_{1}(A, B, C)=(A \wedge \sim B) \vee[\sim C \wedge(A \vee B)] \vee \sim A$ and $F_{2}(A, B)=(A \vee B) \vee(B \rightarrow \sim A)$ be two logical expressions. Then:

1) F_{1} is not a tautology but F_{2} is a tautology
2) Both F_{1} and F_{2} are not tautologies
3) F_{1} and F_{2} both are tautologies
4) F_{1} is a tautology but F_{2} is not a tautology

Key:1

Solution:

$F_{1}(A, B, C)=(\sim A \vee B) \vee(\sim A) \vee(\sim c \wedge(A \vee B))$
$F_{2}(A, B)=(A \vee B) \vee(B \rightarrow \sim A)$
F_{1} not tautology; F_{2} is tautology

A	B	C	$\sim A$	$\sim C$	$A \vee B$	$\sim A \vee B$	$\sim C \wedge(A \vee B)$	$(\sim A \vee B)$ $\vee(\sim C(A \vee B)$ $\vee(\sim A)$
T	T	T	F	F	T	T	F	T
T	F	F	F	T	T	F	T	T
T	T	F	F	T	T	T	T	T
T	F	T	F	F	T	F	F	F
F	T	T	T	F	T	T	F	T
F	F	F	T	T	F	T	F	T
F	T	F	T	T	T	T	T	T
F	F	T	T	F	F	T	F	T

Truth table for F_{2}

A	B	$A \vee b$	$\sim A$	$B \rightarrow \sim A$	$(A \vee B) \vee(B \rightarrow \sim A)$
T	T	T	F	F	F
T	F	T	F	T	T
F	T	T	T	T	T
F	F	F	T	T	T

68. Let slope of the tangent line to a curve at any point $P(x, y)$ be given by $\frac{x y^{2}+y}{x}$. If the curve intersects the line $x+2 y=4$ at $x=-2$, then the value of y, for which the point $(3, y)$ lies on the curve, is :
1) $-\frac{18}{11}$
2) $-\frac{4}{3}$
3) $\frac{18}{35}$
4) $-\frac{18}{19}$

Key: 4

Solution:

$\frac{d y}{d x}=\frac{x y^{2}+y}{x} \quad x d y-y d x=x y^{2} d x$
$\frac{y d x-x d y}{y^{2}}=-x d x \Rightarrow \int d\left(\frac{x}{y}\right)=f x d x \Rightarrow \frac{x}{y}=\frac{-x^{2}}{2}+c$
\downarrow passes through $(-2,3) \Rightarrow \frac{-2}{3}=-2+c \Rightarrow c=\frac{4}{3}$
Curve is $\frac{x}{y}=\frac{-x^{2}}{2}+\frac{4}{3}$
$(3, y)$ lies on it $\Rightarrow \frac{3}{y}=\frac{-9}{2}+\frac{4}{3} \Rightarrow \frac{3}{y}=\frac{-19}{6} \Rightarrow y=\frac{-18}{19}$
69. If $0<a, b<1$, and $\tan ^{-1} a+\tan ^{-1} b=\frac{\pi}{4}$, then the value of $(a+b)-\left(\frac{a^{2}+b^{2}}{2}\right)+\left(\frac{a^{3}+b^{3}}{3}\right)-\left(\frac{a^{4}+b^{4}}{4}\right)+\ldots$ is

1) $\log _{e}\left(\frac{e}{2}\right)$
2) e
3) $\log _{e} 2$
4) $e^{2}-1$

Key:3

Solution:

$$
\begin{aligned}
& \operatorname{Tan}^{-1}(a)+\operatorname{Tan}^{-1}(b)=\frac{\pi}{4} \Rightarrow \frac{a+b}{1-a b}=1 \Rightarrow a b+a b=1 \\
& =\left(a-\frac{a^{2}}{2}+\frac{a^{3}}{3}-\frac{a^{4}}{4}+\ldots . \infty\right)+\left(b-\frac{b^{2}}{2}+\frac{b^{3}}{3}-\frac{b^{4}}{4}+\ldots . . \infty\right) \\
& =\ln (1+a)+\ln (1+b) \\
& =\ln ((1+a)(1+b)) \\
& =\ln (1+a+b+a b)=\ln 2
\end{aligned}
$$

70. Let $f(x)=\int_{0}^{x} e^{t} f(t) d t+e^{x}$ be a differentiable function for all $x \in R$. Then $f(x)$ equals:
1) $e^{\left(e^{x}-1\right)}$
2) $2 e^{\left(e^{x}-1\right)}-1$
3) $e^{e^{x}}-1$
4) $2 e^{e^{x}}-1$

Key: 2

Solution:

$$
\begin{aligned}
& f(x)=\int_{0}^{x} e^{t} f(t) d x+e^{x} \quad f^{\prime}(x)=e^{x} f(x)+e^{x} \\
& =e^{x}(f(x)+1) \Rightarrow \frac{f^{\prime}(x)}{f(x)+1}=e^{x} \Rightarrow \int \frac{f^{\prime}(x)}{f(x)+1} d x=\int e^{x} d x \\
& \Rightarrow \ln (1+f(x))=e^{x}+c \text { but } f(0)=1 \therefore \ln 2=1+c \\
& \ln (1+f(x))=e^{x}+\ln 2-1=\ln \left(2 . e^{e^{x-1}}\right) \\
& 1+f(x)=2 . e^{\left(e^{x}-1\right)} f(x)=2 e^{\left(e^{x}-1\right)}-1
\end{aligned}
$$

71. Let $f: R \rightarrow R$ be defined as

$$
f(x)=\left\{\begin{array}{ccc}
2 \sin \left(-\frac{\pi x}{2}\right), & \text { if } & x<-1 \\
\left|a x^{2}+x+b\right|, & \text { if } & -1 \leq x \leq 1 \\
\sin (\pi x), & \text { if } & x>1
\end{array}\right.
$$

If $f(x)$ is continuous on R , then $\mathrm{a}+\mathrm{b}$ equals:

1) -3
2) 3
3) 1
4) -1

Key:4

Solution:

$f(x)=2 \sin \left(-\frac{\pi x}{2}\right), x<-1=\left|a x^{2}+x+b\right|,-1 \leq x \leq 1$
$=\sin \pi x, x>1 \quad$ Is continuous $\forall x \in R$
$\Rightarrow f\left(-1^{-}\right)=f\left(-1^{+}\right)=f(-1), f\left(1^{-}\right)=\left(1^{+}\right)=f(1)$
$\Rightarrow 2=|a+b-1|,|a+b+1|=0 \quad a+b+1=0 \Rightarrow a+b=-1$
72. For $x>0$, if $f(x)=\int_{1}^{x} \frac{\log _{e} t}{(1+t)} d t$, then $f(e)+f\left(\frac{1}{e}\right)$ is equal to

1) -1
2) 0
3) 1
4) $\frac{1}{2}$

Key: 4

Solution:

$f(x)=\int_{1}^{x} \frac{\log _{e}{ }^{t}}{1+t} d t \quad f\left(\frac{1}{x}\right)=\int_{1}^{1 / x} \frac{\log t}{1+t} d t$
Put $t=\frac{1}{z}=\int_{1}^{x} \frac{-\ln z}{1+\frac{1}{z}}\left(\frac{-1}{z^{2}}\right) d z=\int_{1}^{x} \frac{\ln z}{z(1+z)} d z$
$=\int_{1}^{x} \frac{\ln t}{t(1+t)} d t \therefore f(e)+f\left(\frac{1}{e}\right)=\int_{1}^{e} \frac{\ln t}{1+t} d t+\int_{1}^{e} \frac{\ln t}{t(1+t)} d t$
$=\int_{1}^{e} \frac{\ln t}{t} d t=\left(\frac{(\ln t)^{2}}{2}\right)_{1}^{e}=\frac{1}{2}$
73. A natural number has prime factorization given by $n=2^{x} 3^{y} 5^{z}$, where y and z are such that $y+z=5$ and $y^{-1}+z^{-1}=\frac{5}{6}, y>z$. Then the number of odd divisors of n, including 1, is

1) 6
2) 11
3) 12
4) $6 x$

Key:3

Solution:

$$
y+z=5, \frac{1}{y}+\frac{1}{z}=\frac{5}{6}, y>z N=2^{x} 3^{y} 5^{z}
$$

Solving $y=3, z=2$

No.of odd divisors of $N=(3+1)(2+1)=12$
74. Let A_{1} be the area of the region bounded by the curves $y=\sin x, y=\cos x$ and y-axisin the first quadrant. Also, let A_{2} be the area of the region bounded by the curves $y=\sin x, y=\cos x, x-$ axis and $x=\frac{\pi}{2}$ in the first quadrant. Then

1) $2 A_{1}=A_{2}$ and $A_{1}+A_{2}=1+\sqrt{2}$
2) $A_{1}: A_{2}=1: 2$ and $A_{1}+A_{2}=1$
3) $A_{1}: A_{2}=1: \sqrt{2}$ and $A_{1}+A_{2}=1$
4) $A_{1}=A_{2}$ and $A_{1}+A_{2}=\sqrt{2}$

Key:3

Solution:

$$
y=\sin x, y=\cos x, y=\text { axis }
$$

$$
\begin{aligned}
& \text { (s) } \\
& A_{1}=\int_{0}^{\pi / 4}(\cos x-\sin x) d x=(\sin x+\cos x)_{0}^{\pi / 4}=\sqrt{2}-1 \\
& y=\sin x, y=\cos x, x-\text { axis, } x=\pi / 2 \\
& A_{2}=\int_{0}^{\pi / 4} \sin x d x+\int_{\pi / 4}^{\pi / 2} \cos x=-(\cos x)_{0}^{\pi / 4}+(\sin x)_{\pi / 4}^{\pi / 2} \\
& =1-\frac{1}{\sqrt{2}}+1-\frac{1}{\sqrt{2}}=2-\sqrt{2} \\
& A_{1}: A_{2}=\sqrt{2}-1: \sqrt{2}(\sqrt{2}-1)=1: \sqrt{2} \\
& A_{1}+A_{2}=1
\end{aligned}
$$

75. If the locus of the mid-point of the line segment from the point $(3,2)$ to a point on the circle, $x^{2}+y^{2}=1$ is a circle of radius r, then r is equal to
1) $\frac{1}{4}$
2) $\frac{1}{3}$
3) $\frac{1}{2}$
4) 1

Key:3

Solution:

Point on circle $=(\cos \theta, \sin \theta)=p$
Let $Q=(3,2)$
Mid point of $P Q=\left(\frac{\cos \theta+3}{2}, \frac{\sin \theta+2}{2}\right)$
$=(x, y) \quad \Rightarrow(2 x-3)^{2}+(2 y-2)^{2}=1 \quad \Rightarrow\left(x-\frac{3}{2}\right)^{2}+(y-1)^{2}=1 / 4$
Radius $=1 / 2$
76. The sum of the series $\sum_{n=1}^{\infty} \frac{n^{2}+6 n+10}{(2 n+1)!}$ is equal to :

1) $\frac{41}{8} e+\frac{19}{8} e^{-1}+10$
2) $-\frac{41}{8} e+\frac{19}{8} e^{-1}-10$
3) $\frac{41}{8} e-\frac{19}{8} e^{-1}-10$
4) $\frac{41}{8} e+\frac{19}{8} e^{-1}-10$

Key:3

Solution:

$\sum_{n=1}^{\infty} \frac{n^{2}+6 n+10}{(2 n+1)!} \quad$ Let $2 n+1=\lambda \quad \Rightarrow n=\frac{\lambda-1}{2}$
$\frac{n^{2}+6 n+10}{(2 n+1)!}=\frac{\left(\frac{\lambda-1}{2}\right)^{2}+6\left(\frac{\lambda-1}{2}\right)+10}{\lambda!}$

$$
=\frac{\lambda^{2}+10 \lambda+29}{4(\lambda!)}
$$

Also $\lambda=3,5,7,9,11, \ldots \ldots$
\therefore Required $=\frac{1}{4} \sum \frac{\lambda(\lambda-1)+11 \lambda+29}{\lambda!}$
$\lambda=3,5,7, \ldots \ldots \ldots$.

$$
\begin{aligned}
& =\frac{1}{4}\left(\sum_{\lambda=3,5,7, \ldots \ldots \ldots .}\left(\frac{1}{(\lambda-2)!}+\frac{11}{(\lambda-1)!}+\frac{29}{\lambda!}\right)\right) \\
& =\frac{1}{4}\left(\left(\frac{1}{\boxed{4}}+\frac{1}{\boxed{3}}+\frac{1}{\boxed{5}}+\ldots . .\right)+11\left(\frac{1}{\boxed{2}}+\frac{1}{\boxed{4}}+\ldots . .+\right)+29\left(\frac{1}{\boxed{3}}+\frac{1}{\boxed{ }}+\frac{1}{\boxed{ } 7}+\ldots . .\right)\right) \\
& =\frac{1}{4}\left(\frac{e-\frac{1}{e}}{2}\right)+11\left(\frac{e+\frac{1}{e}-2}{2}\right)+29\left(\frac{e-\frac{1}{e}-2}{2}\right) \quad=\frac{1}{8}\left(41 e-\frac{19}{c}-80\right)
\end{aligned}
$$

77. A seven digit number is formed using digits $3,3,4,4,4,5,5$. The probability, that number so formed is divisible by 2 is
1) $\frac{4}{7}$
2) $\frac{1}{7}$
3) $\frac{6}{7}$
4) $\frac{3}{7}$

Key: 4

Solution:

No. Of 7 digits number using $3,3,4,4,5,5$

$$
=\frac{\boxed{7}}{\lfloor 2\lfloor 3\lfloor 2}
$$

To get divisible by ' 2 ',
Digit in units place must be ' 4 ', $=\frac{\boxed{6}}{\boxed{2\lfloor\boxed{62}}}$
Required probability $=\frac{\frac{16}{\boxed{2}\lfloor\boxed{2}}}{\frac{\boxed{7}}{\boxed{2 \boxed{3} \mid 2}}}=\frac{3}{7}$
78. Let $A=\{1,2,3, \ldots .10\}$ and $f: A \rightarrow A$ be defined as
$f(k)=\left\{\begin{array}{cl}k+1 & \text { if } k \text { is odd } \\ k & \text { if } k \text { is even }\end{array}\right.$ then the number of possible functions $g: A \rightarrow A$ such that $g o f=f$ is

1) $10_{C_{5}}$
2) 5^{5}
3) 10^{5}
4) 5 !

Key:3

Solution:

Range of $f=\{2,4,6,8,10\}$
$\therefore g(\lambda)=\lambda$ when ' λ ' is even
$g: A \rightarrow A, A=\{1,2,3, \ldots \ldots ., 10\}$
No. of functions $=10^{5}$
79. The triangle of maximum area that can be inscribed in a given circle of radius ' r ' is

1) An equilateral triangle of height $\frac{2 r}{3}$
2) An isosceles triangle with base equal to $2 r$
3) A right angle triangle having two of its sides of length $2 r$ and r
4) An equilateral triangle having each of its side of length $\sqrt{3} r$

Key: 4

Solution:

Circum radius of $\Delta l e=r$
Area of $\Delta^{l e}=2 r^{2} \sin A \sin B \sin C$
Maximum when $A=B=C=\pi / 3 \quad \Rightarrow$ equilateral
side $=2 r \sin \pi / 3=\sqrt{3} r$
80. Let $f(x)$ be a differentiable function at $x=a$ with $f^{\prime}(a)=2$ and $f(a)=4$. Then
$\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$

1) $2 a+4$
2) $2 a-4$
3) $a+4$
4) $4-2 a$

Key: 4

Solution:

$\operatorname{Lt}_{x \rightarrow a} \frac{x \cdot f(a)-a \cdot f(x)}{x-a}$
$=\operatorname{Lt}_{x \rightarrow a} \frac{f(a)-a \cdot f^{\prime}(x)}{1}$
(Using L' Hospital's rule)
$=f(a)-a f^{\prime}(a)$
$=4-2 a$

(NUMERICALVALUE TYPE)

This section contains 10 questions. Each question is numerical value type. For each question, enter the correct numerical value (in dedimal notation, truncated/ rounded-off to second decimal place. (e.g. 6.25, 7.00, $0.33,30,30.27,127.30$). Attempt any five questions out of 10.
Marking scheme: +4 for correct answer, 0 if not attempted and 0 in all other cases.
81. The total number of 4-digit numbers whose greatest common divisor with 18 is 3 , is

Key:1000

Solution:

No. of 4 digits numbers $=9000$
for g.cd of any number with 18 is 3
Number should be add, number divisible by 3, but not divisible by 9
Odd number divisible by $3=1005,1011,-----9999$
These are $\rightarrow 1499$
no of 4 digit odd divisible by
$=1017,1035,---------9999 \rightarrow 499$ required $=1499-499=1000$
82. Let the normals at all the points on given curve pass through a fixed point (a, b). If the curve passes through $(3,-3)$ and $(4,-2 \sqrt{2})$, and given that $a-2 \sqrt{2} b=3$, then $\left(a^{2}+b^{2}+a b\right)$ is equal to \qquad
Key:9
Solution:

$$
\text { equation of normal is } Y-y=\frac{-1}{m}(X-x)
$$

It passes through $(\mathrm{a}, \mathrm{b}) \Rightarrow b-y=\frac{-1}{m}(a-x)$
also passes through $(3,-3),(4,-2 \sqrt{2})$
$\Rightarrow(b-y) d y=(x-a) d x$

$$
\Rightarrow b y-\frac{y^{2}}{2}=\frac{x^{2}}{2}-a x+c
$$

$\Rightarrow-3 b-\frac{9}{2}=\frac{9}{2}-3 a+c \Rightarrow 3 a-3 b-c=9 \rightarrow(1)$
$4 a-2 \sqrt{2} b-c=12 \rightarrow(2)$
$(1)-(2) \Rightarrow a+(3-2 \sqrt{2}) b=3$ $a-2 \sqrt{2} b=3 \quad\}_{\text {solving } \mathrm{b}=0, \mathrm{a}=3}$
$\therefore a^{2}+b^{2}+a b=9$
83. If $I_{m, n}=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$, for $m, n \geq 1$, and $\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x=\alpha I_{m, n, \alpha \in R}$, then α equals \qquad

Key:1

Solution:

$\mathrm{I}_{m, n}=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$
Let $x=\frac{1}{x+1}$
$\mathrm{I}_{m, n}=\int_{\infty}^{0} \frac{-t^{n-1}}{(t+1)^{m+n}} d t=\int_{0}^{\infty} \frac{t^{n-1}}{(t+1)^{m+n}} d t \rightarrow(1)$

Similarly $I_{m, n}=\int_{0}^{1}(1-x)^{m-1} x^{n-1} d x$
But $x=\frac{1}{y+1} \quad I_{m, n}=\int_{0}^{\infty} \frac{y^{m-1}}{(y+1)^{m+n}} d y \rightarrow$
$(1)+(2) \Rightarrow 2 I_{m, n}=\int_{0}^{\infty} \frac{t^{n-1}}{(t+1)^{m+n}} d t+\int_{0}^{\infty} \frac{y^{m-1}}{(y+1)^{m+n}} d y$
$=\int_{0}^{\infty} \frac{x^{n-1}+x^{m-1}}{(x+1)^{m+n}} d x=\int_{0}^{1} \frac{x^{n-1}+x^{m-1}}{(x+1)^{m+n}} d x+\int_{1}^{\infty} \frac{x^{n-1}+x^{m-1}}{(x+1)^{m+n}} d x$
Put $x=\frac{1}{z}=\int_{0}^{1} \frac{x^{n-1}+x^{m-1}}{(x+1)^{m+n}} d x+\int_{0}^{1} \frac{x^{n-1}+x^{m-1}}{(x+1)^{m+n}} d x 2 \mathrm{I}_{m, n}=2 \int_{0} \frac{x^{n-1}+x^{m-1}}{(x+1)^{m+n}} d x$
$\Rightarrow I_{m, n}=\int_{0}^{1} \frac{x^{n-1}+x^{m-1}}{(x+1)^{m+n}} d x$
84. Let α and β be two real numbers such that $\alpha+\beta=1$ and $\alpha \beta=-1$ Let $p_{n}=(\alpha)^{n}+(\beta)^{n}$, $P_{n-1}=11$ and $P_{n+1}=29$ for some integer $n \geq 1$. Then, the value of p_{n}^{2} is \qquad
Key:324
Solution:

$$
p_{n}=\alpha^{n}+\beta^{n} \quad p_{n-1}=11, p_{n+1}=29 \quad \alpha+\beta=1, \alpha \beta=-1
$$

The Question Equation having roots α, β is $x^{2}-x-1=0$
$\Rightarrow \alpha^{2}=\alpha+1, \beta^{2}=\beta+1 \quad \Rightarrow \alpha^{n}=\alpha^{n-1}+\alpha^{n-2}, \beta^{n}=\beta^{n-1}+\beta^{n-2}$
$\Rightarrow \alpha^{n}=\alpha^{n-1}+\alpha^{n-2}, \beta^{n}=\beta^{n-1}+\beta^{n-2} \Rightarrow p \sim=p_{n-1}+p_{n-2}$
$\Rightarrow p_{n+1}=p_{n}+p_{n-1} \Rightarrow p_{n}=29-11=18$
$\therefore p_{n}^{2}=324$
85. If the matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1\end{array}\right]$ satisfies the equation $A^{20}+\alpha A^{19}+\beta A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]$ for some real numbers α and β then $\beta-\alpha$ is equal to \qquad

Key:4

Solution:

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
3 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
3 & 0 & -1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right) \Rightarrow A^{4}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

symilrly $A^{19}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2^{19} & 0 \\ 3 & 0 & -1\end{array}\right) A^{20}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2^{20} & 0 \\ 0 & 0 & 1\end{array}\right)$
$\therefore A^{20}+\alpha A^{19}+g b A=\left(\begin{array}{ccc}1+\alpha+\beta & 0 & 0 \\ 0 & 2^{20}+\alpha 2^{19}+2 \beta & 0 \\ 3 \alpha+3 \beta & 0 & 1-\alpha-\beta\end{array}\right)$
$=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right)$
$\Rightarrow \alpha+\beta=02^{20}+\alpha\left(2^{19}\right)+2 \beta=4$
$\Rightarrow \alpha=-2 \Rightarrow \beta-\alpha=4$
86. Let $X_{1}, X_{2}, \ldots \ldots, X_{18}$ be eighteen observations such that $\sum_{i=1}^{18}\left(X_{i}-\alpha\right)=36$ and $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90$, where α and β are distinct real numbers. If the standard deviation of these observations is 1 , then the value of $|\alpha-\beta|$ is \qquad

Key: 4

Solution:

$$
\begin{aligned}
& \left(\Sigma x_{i}\right)-18 \alpha=36 \\
& \Sigma x_{i}=18(\alpha+2) \\
& \left(\Sigma x_{i}^{2}\right)+18 \beta^{2}-2 \beta \Sigma x_{i}=90 \\
& \Rightarrow \Sigma x_{o}^{2}=90-18 \beta^{2}+36(\alpha+2) \beta \\
& \sigma^{2}=1 \Rightarrow \frac{1}{18}\left(\Sigma x_{i}^{2}\right)-\left(\frac{\Sigma x_{i}}{18}\right)=1
\end{aligned}
$$

$\Rightarrow \frac{1}{18}\left(90-18 \beta^{2}+36 \alpha \beta+72 \beta\right) \quad-(\alpha+2)^{2}=1$
$\Rightarrow 5-\beta^{2}+2 \alpha \beta+4 \beta-\alpha^{2}-4-4 \alpha=1$
$\Rightarrow \alpha^{2}+\beta^{2}-2 \alpha \beta+4(\alpha-\beta)=0$
$\Rightarrow(\alpha-\beta)(\alpha-\beta+4)=0$
$\Rightarrow \alpha-\beta=-4(\therefore \alpha \neq \beta)$
$\therefore|\alpha-\beta|=4$
87. If the arithmetic mean and geometric mean of the $\mathrm{p}^{\text {th }}$ and $\mathrm{q}^{\text {th }}$ terms of the sequence $-16,8,-4,2, \ldots$. satisfy the equation $4 x^{2}-9 x+5=0$, then $p+q$ is equal to \qquad .

Key:10

Solution:

Given sequence is $-16,8,-4,2, \ldots \ldots \ldots$.
$=-16,-16\left(\frac{-1}{2}\right),-16\left(\frac{-1}{2}\right)^{2},-16\left(\frac{-1}{2}\right)^{3}, \ldots$.
$t_{p}=-16\left(\frac{-1}{2}\right)^{p-1}, t_{q}=-16\left(\frac{-1}{2}\right)^{q-1}$
$\frac{t_{p}+t_{q}}{2}, \sqrt{t_{p} t_{q}}$ are roots of $4 x^{2}-9 x+5=0$
Which are $\frac{5}{4}, 1$
$\sqrt{t_{p} t_{q}}=1 \Rightarrow t_{p} q_{q}=1$
$\Rightarrow 2^{8}\left(\frac{-1}{2}\right)^{p+q-2}=1$
$\Rightarrow p+q-2$ is even, $10-(p+q)=0$
$\Rightarrow p+q=10$
88. Let L be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line is \qquad .

Key:3

Solution:

Let m be the slope of tangent to $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
$\Rightarrow ' \mathrm{~L}$ ' is $y=m x \pm \sqrt{9 m^{2}+4}$
It is a tangent to circle $x^{2}+y^{2}=\frac{31}{4}$
$\Rightarrow \frac{\sqrt{9 m^{2}+4}}{\sqrt{m^{2}+1}}=\sqrt{\frac{31}{4}}$
$\Rightarrow 4\left(9 m^{2}+4\right)=31 m^{2}+31$
$\Rightarrow 5 m^{2}=15 \Rightarrow m^{2}=3$
89. Let a be an integer such that all the real roots of the polynomial $2 x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+10 x+10$ lie in the interval $(a, a+1)$. Then, $|a|$ is equal to

Key:2

Solution:

$$
\begin{aligned}
& f(x)=2 x^{5}+5 x^{4}+10 x^{3}+10 x^{2}+10 x+10 \\
& \Rightarrow f^{\prime}(x)=10 x^{4}+20 x^{3}+30 x^{2}+20 x+10 \\
& =10\left[x^{4}+2 x^{3}+3 x^{2}+2 x+1\right] \\
& =10 x^{2}\left(x^{2}+\frac{1}{x^{2}}+2\left(x+\frac{1}{x}\right)+3\right) \\
& =10 x^{2}\left(\left(x+\frac{1}{x}\right)^{2}-2+2\left(x+\frac{1}{x}\right)+3\right) \\
& =10 x^{2}\left(\left(x+\frac{1}{x}\right)^{2}+2\left(x+\frac{1}{x}\right)+1\right) \\
& =10 x^{2}\left(\left(x+\frac{1}{x}\right)+1\right)^{2} \\
& >0 \forall x \in R-\{0\}
\end{aligned}
$$

\exists exactly one real root.
$f(-1)=3, f(-2)=-34$
$f(-1) \cdot f(-2)<0 \Rightarrow 7$ a root in $(-2,-1)$
$\therefore a=-2 \Rightarrow|a|=2$
90. Let z be those complex numbers which satisfy $|z+5| \leq 4$ and $z(1+i)+\bar{z}(1-i) \geq-10, i=\sqrt{-1}$.
If the maximum value of $|z+1|^{2}$ is $\alpha+\beta \sqrt{2}$, then the value of $(\alpha+\beta)$ is \qquad .

Key:48

Solution:

$|z+5| \leq 4, \quad z(1+i)+\bar{z}(1-i) \geq-10$
$|z+5| \leq 4 \Rightarrow$ interior part and circumference of circle with centre $(-5,0)$ and radius $=4$
$z(1+i)+\bar{z}(1-i) \geq-10 \Rightarrow 2(x-y) \geq-10$
$\Rightarrow x-y \geq-5$

For max of $|z+1|^{2}$
$\therefore p=\left(-5,-4\left(\frac{1}{\sqrt{2}}\right), 0-4\left(\frac{1}{\sqrt{2}}\right)\right)$

$$
=(-5-2 \sqrt{2},-2 \sqrt{2})
$$

$|z+1|_{\max }^{2}=(C P)^{2}$
$=(-4-2 \sqrt{2})^{2}+(-2 \sqrt{2})^{2}$
$=32+16 \sqrt{2}$
$=\alpha+\beta \sqrt{2}$
$\alpha=32, \beta=16$

